
tion like exp (--3az/Z). Such a nonuniform relase of heat from the channel wails is automat- 
ically accomplished in practice with a steady-state flow provided the total cooling is suf- 
ficient to ensure wall temperatures close to absolute zero. 

This study gives a sufficiently complete representation of the qualitative features of 
gas flow in a flat channel with cryogenicwalls as confirmed bythe results of numerical cal- 
culations for a typical range of the definitive parameters. 

NOTATION 

y, z, spatial coordinates; Vy, Vz, components of gas velocity; 0, density; p, pressure; 

T , Y , components of vis h, enthalpy; H, total enthalpy; ~, ratio of specific heats; Tyy, yz zz 
cous stress tensor; qy, qz, components of thermal flux vector; ~, coefficient of viscosity; 
~, Prandtl number; R, channel half-width; q,, q2, q3, flows of mass, momentum, and energy; ~, 
dimensionless parameter characterizing axial flow variations; 8, y, dimensionless flow param- 
eters [Eqs. (I0)]; Av, Bv, Bw, Bh, coefficients of expansions in the neighborhood of the wall; 
lf, coefficient of channel resistance; l, channel length; FZ, total resistive force of chan- 
nel; S, cross-sectlonal area of channel; U, velocity at channel axis in entry cross section; 
0, subscript denoting values on the axis. 
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MATHEMATICAL SIMULATION OF HEAT- AND MASS-TRANSFER PROCESSES IN 

SEPARATED FLOWS WITH A LAMINAR MIXING REGION AT LOW REYNOLDS NUMBERS 

R. I. Ayukaev and L. V. Poluyanov UDC 66.015.25 

The lower limit of applicability of the mathematical model of heat and mass trans- 
fer constructed by Batchelor and Lavrent'ev for separated flow past a bottom 
trench is extended. 

The mathematical model of heat and mass transfer for separated flow past a bottom trench 
constructed by Batchelor and Lavrent'ev [i] is of undisputed interest in many chemical- 
engineering problems. In particular, it is used successfully for study of hydrodynamic in- 
homogeneities in reactors with a fixed catalyst layer [2]. 

Quantitative estimates of heat and mass transfer are obtained in this model by employ- 
ing dynamic and diffusion boundary-layer theory, so that its use is recommended only at Rey- 
nolds numbers exceeding hundreds or even thousands [3]. However, a significant number of 
processes take place at moderate or low Reynolds numbers, also with realization of a separa- 
tion in the flow, so that this model could also be utilized. Numerical solutions of the 
Navier-Stokes equation by Myshenkov [4] for flow of a gas beyond a plate of finite thickness 
in the Reynolds number range of 1.7 to i00 show the possibility Of existence of flows with 
separation at even small Reynolds numbers. The gas flow in the wake beyond the plate at 
Re < 1.7 is of a continuous nature, but at Re = 1.7 at the rear critical point there develops 
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Fig. i. Flow region diagram of [i] 
I, II, III) Regions of unperturbed 
flow, mixing,:and turbulence forma- 
tion. 

a quite large region of low velocities, which with increase in Reynolds number transforms to 
a region of reverse current, producing separation of the flow. 

Flow separation also sets in at relatively small Reynolds numbers beyond bodies of rota- 
tion. Kravchenko, Shevelev, and Shennikov have generalized results (including their own) of 
solutions of the Navier--Stokes equations for cases of flow past a cylinder of a viscous in- 
compressible liquid under conditions of stationary and nonstationary (tending in the limit to 
stationary) motions or motion of the cylinder in the liquid [5]. They demonstrated that vor- 
tices first appear at values close to Re ~ 6. Taneda's [6] experimental data agree well with 
these observations. He measured the length of turbulent zones formed beyond a cylinder from 
streamline photographs for Reynolds numbers from 7 to 42. Transition from two- to three- 
dimensional flow (around a sphere) moves the critical turbulence formation zone from Re - 6 
to Re ~ 24 [6]. The above demonstrates the desirability of expanding the lower limit of ap- 
plicability of the separated-flow model for study of heat- and mass-transfer processes in 
chemical-engineering processes. A diagram of the model of [I] is shown in Fig. I. 

The basic equation for calculation of the forces acting on the outer limit of the bound- 
ary layer in the secondary flow was taken as 

,[ �9 (y )ey  = ,i ey.,. (1)  
0 0 

(this implies that the contribution of viscosity forces along a closed contour is equal to 
zero). For calculation of the forces acting in the mixing region [right side of Eq. (i)] of 
the primary and secondary flows, the solutio$ obtained by Vulis and Kashkarov [7] for the 
case Re § ~, where the assumption of constant pressure over the entire flow field and, conse- 
quently, of fulfillment of the boundary-layer theoryapproximation of smallness of the trans- 
verse velocity component V in comparison to longitudinal component U(V << U < U=), produces 
no special objections. In flows with smaller Reynolds numbers it is possible that the condi- 
tion grad P = 0 of [i] may be disrupted due to curvature of streamlines in flow past a body 
with discontinuity of the elements studied. 

We must thus perform an approximate calculation of the contribution to interaction of 
the companion flows U, and Ua (Fig. i) of the pressure gradient (PI # P2). For x, +-~ and 
x2 § +~ the ratio of the static and velocity head gradients has the form [7] 

P1 -- P2 
(2) 

Numerical evaluation of Eq. (2) for the condition Uz/U, = 0 (U2 = 0, U, > 0) performed in [7] 
gives 4K = 0.0055. With the assumption that K is little dependent on U2/U,(for values of 
U2/U, of practical interest), the result obtained indicates that at grad P # 0 the basic 
contribution to interaction is produced by tangent (viscous) force components applied to 
planes normal to x. This justifies asignificant expansion of the range of applicability 
(over Reynolds number) of the function describingliquid motion in the laminar mixing 
region-- Eq. (3) of [i]. 

In calculating the interaction forces between a liquid flow and a solid wall [left side 
of Eq. (i)], the small size of the Reynolds number proves to be more significant, and it is 
no longer possible to use the expression for total resistance coefficient calculated from 
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boundary-layer theory as was done in [i]. In connection with this, the authors previously 
[8] introduced a correction for smallness of the Reynolds number by using an expression for 
resistance coefficient derived by Kuo Yung-hua, which has been well verified for Re > I0 [3]. 
The relationship between boundary conditions, i.e., between values of the primaryflow ve- 
locity Ux, velocities on the external boundary of the secondary flow U2, and the geometric 
eharacteristlcs It and 12 (Fig. l),then takes the form 

10 6.3S V-m l / T z  (3) -~=0.722m(m--  1) 3 Re~- m VRe~-I ~ ' 

where m : Ux/U,. One of the problems of further reducing the lower limit of applicability 
of the model considered is derivation of an expression for computation of the resistance co- 
efficient for a flat lamina for flow-by of a viscous incompressible liquid at Reynolds num- 
bers down to I. To do this we solved the Oseen equation, results Of which are presented be- 
low. The Oseen equation has the form [9] 

au 1 aP 
U . . . .  + vAU, 

Ox p Ox 
U OV 1 OP . . . . . .  § vAV, (4) 

Ox p Oy 

au : ov - - + - - = o .  
Ox Og 

The fact that the resistance of a plane lamina flowed over by a viscous incompressible liquid 
is produced solely by friction forces allows us to limit our examination of equations for the 
flow function. Writing Eq. (4) in vector form, taking the curl of both sides, and introduc- 
ing the flow function, we obtain 

a ~ v A )  A ~ = 0  (5) U Oy 

( the con t inu i ty  equation is  s a t i s f i e d  au tomat ica l ly) .  

As is  wel l  known [10], the optimum coordinates  for study of flow past a s e m i i n f i n i t e  
lamina are the coordinates  of a parabolic  cyl inder  (Fig. 2). The Laplace operator  and d i f -  
f e r e n t i a t i o n  operators  in  these  coordinates  have the form [11] 

1 (  a~ as) 
A-- o 2+~ a~ ~ + ~  , 

0 l ( zO  O)  
o-7  = - .  

(6) 

Substituting Eq. (6) in Eq. (5), we have 

[( 0 0) , (o2 
--G --V ' u s 

We write the boundary conditions for Eq. (7): 

1 ( a a  az ) 
~ + ~  --~-~ + ~-~-~ =0. (7) 

. = o  , = o  a--*-*=o, aa 

~- - -~  00 
a r  

a~ ~ wU or ~ a U .  aa ax 

(8) 
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~ Fig. 2. Diagram of flow past a semi- 

pressible liquid (in parabolic cylin- 
der coordinates). 

Considering the form of the boundary conditions (direct proportionality between the flow 
function and z) and the fact that o and T appear in Eq. (7) only in even powers, we will seek 
a solution in the form of the following asymptotic series: 

,-, #o(~) + l_..f,(~) + . . . .  ( 9 )  
T 

In the one-term approximation, substituting Eq~ (9) in Eq. (7), we obtain for fo(o) 

U- ;o  + +f~' = o. (1o) 

For Eq. (i0), from Eq. (8) there follow the boundary conditions 

We denote f~l = g, 9/U = ~. Then 

We introduce the variable $ = (i//~)O. 

6=0 &=fg=0, 

6-~= fo~ --,. U. 

%gII-{-agt + g O. 

Then 

(n )  

(12) 

d 1 d d 1 d 2 
do ]/-~-- d$ dc; z ~, d$ ~ 

~g +8_~jg + g =  o. 
d@ 2 

(13) 

The solution of Eq. (13) has the form [12] 

g = exp ( - -  a~/4) D O (a), 

where Do(V) is a parabolic cylinder function o f  index O. 
Eq. (13) have the form [13] 

Two linear independent solutions of 

e l  ---- Do (~) exp ( - -  ~2/4), 

g'2 = D~ (i~) exp (--;y2/4). 

For gx we have [13] 

g~ = exp(-- a~/4)Do(a) = exp(--~2/4)exp(--~2/4) Ho ( ~ )  

where Ho(~//2) -- i is a zero-order Hermite polynomial [13]. 
form [14] 

f ~  
~2 

0 

(14a) 

(14b) 

(,u) 
= exp --~-.--~ o 2 , (15a) 

Then g2 may be written in the 

(15b) 
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Thus four linearly independent solutions of Eq. (i0) have the form 

f(ol) = 1, /do2) = a ,  

fs ~ t~ �9 

0 0 

t L  
5- n V~ 

f ( 4 ) ~  . d~l exp -- -~ d~ , exp(--t2)dt. 
0 0 0 

(16a)  

(16b) 

(16c)  

We write the general solution 

&(~) q+C~ ^~(~ = + %1o + CJ~ 4) ( 1 7 )  

where C4 are constants which will be determined below from the boundary conditions, and f~a) 
and f~4~ are given by Eqs. (16b) and (16c). Requiring that the solution Eq. (17) satisfy the 
boundary conditions, we obtain the following system of equations: 

,.~ ~:(3) C~ + %/o (0) + CJ(o 4) (0) = O, 

C2 , p t ( 3 ) '  -J-" ~3]0 (0) + C4f(O 4)' = O, 

q + c3f(o ~)" ( ~ )  + c d  g4)" ( ~ )  = v .  

S i n c e  f o ( ~ ) ( O )  = f o ( ~ ) ( O )  = O, f o ( 3 ) ' ( O )  = f o ( 4 ) ' ( O )  -- O, 
(18b) t h a t  C1 = 0 and Ca = O. Inasmuch as  fo ( 4 ) ' ( ~ )  
ally at infinity, CA = 0. Then Eq. (18c) gives 

C7~o ~" (oo) = u .  

According to [12], we have 

(18a) 

(iSb) 

(18c) 

it follows from Eqs. (18a) and 
i.e., fo (a)' diverges logarithmic- 

(19) 

�9 1 fexp(__t2/2)dt__/~_~ f (o " ( oo ) = V- -F  
0 

Thus it follows from Eq. (19) that 

C3 = / 2vU (20) 

Substituting Eq. (20) in Eq (17) and considering that CI = Ca = Ca = 0, we have 

# 
f~ /~-(vU)' /2  .I d~ ~ exp(-- -~) dt. 

0 0 

(21a) 

Multiplying Eq. (21a) by T, we obtain the flow function in the one-term approximation: 

~V~77 

0 0 

dr. (21b) 

Thus a solution has been obtained for the Oseen equation for the flow function in the one- 
term approximation. Using this solution, we then find the lamina resistance coefficient 
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O~x x=o 

@pU 2 PU z pU a 
(22) 

In parabolic coordinates for ~a/sx a in accordance with Eq. (6) we have 

02 1 ( . tO O )  1 ( 0 O )  1 0 2  

(considering that T >> o, 31~o >> 81~T). Thus, 

~xx x=O 1 02 o =___,__or [ 1 0=, 

We calculate ~oo by differentiating the integral of Eq. (21a) at its upper limit: 

o, - - 7 , ;  ( f (-") 0(~ - - V - ~  (vU)I/2" V U-U- exp -- @ ) dt V :~ 2 "U . exp -~ dr, 
0 0 

V . 2 C/2 2U3av " e x P ( - - - -  
o2u ) 
2v ' (23) 

I _//~ 2U 3 , 1 ~ / 2U ~ 
= - -  T ,  ~ i  = - -  

1/2 

Substituting Eq. (23) into Eq. (22), we obtain the local surface-friction coefficient: 

2/V'~- 1.13 c~ - ~ , - ,  . (24) 
,'Re 

Here Re = Uy/v is the local Reynolds number, calculated at a distance from the forward edge. 

Having integrated Eq. (24), we obtain the mean value of surface friction on one side of 
the plate: 

Y 

~ cjdy 2,26 
0 cl - (25) 

y V N  

Known solutions for flow over a semiinfinite plane plate by a viscous incompressible liquid 
(Blasius, Kuo Yung-hua) were obtained, as indicated above, on the basis of Prandtl boundary- 
layer theory (a solution based on direct integration of the full Navier--Stokes equations was 
attempted, but not completed, by Kochin [3]). The approach used herein differs from those 
above in that the Oseen equation lies at the base of the calculations. It is thus of inter- 
est to compare the above result -- Eq. (25) -- with those obtained previously: by Blasius, 
cf = 1.328/R~e and by Kuo Yung-hua, cf = (1.328/R~e) + (4.18/Re). Results of this comparison 
are presented in Fig. 3. The inapplicability of the Blasius solution to the flow regimes 
studied is obvious. The agreement at Re ~ 20 between the results of the present study and 
the work of Kuo Yung-hua, in which the number of the approximation and the range of the 
"boundary layer" are increased, can be considered reasonable. Solution of the problem con- 
sidered here of flow over a plane plate on the basis of the Oseen equation in the two-term 
or higher approximations (which is methodologically more complex) would evidently shift the 
point of coincidence of cf values into the area of larger Reynolds numbers. 

With consideration of Eq. (25), the relationship between boundary conditions, i.e., be- 
tween primary flow velocity U,, velocity at the outer boundary of the secondary flow U=, and 
the geometric characteristics Z= and ~, take the form 
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Fig. 3. Resistance coefficient of 
plane plate (far from edge) accord- 
ing to Blasius (i), Kuo Yung-hua (2), 
and the Oseen approximation of the 
present study (3). 

3 

Fig. 4. Velocity ratio Ua/U, vs 
la/l, from Eq. (27) (I), Eq. (26) 
(2), Eq. (3) at Re = I000 (3a), 
and Re = I0 (3b). 

l~/l, = 0 ,247rn  (m - -  1 ) t  

The corresponding equation in [i] has the form 

(26) 

lJl I = 0 . 7 2 2 m  (m - -  I)'. ( 2 7 )  

The coefficient on the right side of Eq. (26) is almost three times smaller than that in Eq. 
(27). It is interesting to determine the contribution of this divergence to interaction of 
the primary and secondary flows. To do this we determine the limits of the geometric dimen- 
sions ~2/~,, in which the flow pattern employed in [i] will act. Chang [15] indicates that 
developed turbulent flow (in contrast to flow with a diffusion of the mixing layer) in fine 
grooves is formed beginning approximately with h/b ~ 0.i, where h and h are the depth and 
width of the groove flowed over. In this case for a rectangular groove we have ~2/I, ~ 1.2. 
This quantity should obviously be taken as the lower limit. For the upper limit we may con- 
ditionally take an Z2/l, value close to 4 (which corresponds approximately to an h/b = 1.5-1 
ratio), since it has been demonstrated several times [15-17] that with approach of h/b to 2 
(12/~ = 5) generation of a second vortex in the groove takes place, so that the flow pattern 
and calculations used in the model are disrupted. For the indicated range of 12/11 values 
the ratio U2/U, was calculated with Eq. (26) and Eq. (27) (curves 2 and i of Fig. 4, respec- 
tively), and also by Eq. (3) for Re = I0 and i000. The significant effect on the result of 
the form of the expression used in the model is evident. For flow regimes where Re < 20, 
one should use Eq. (26), while for Re + ~, Eq. (27) Is suitable. In the intermediate range, 
Eq. (3) should be employed. These recommendations should be followed in solving heat- and 
mass-transfer problems with the separated-flow model considered. 

NOTATION 

Re = Uy/~, Reynolds number, where U is velocity; y, segment length; ~, coefficient of 
kinematic viscosity; Ti, shear stress; P, pressure; l,, Za, lengths of mixing zone and cut 
wall; V, transverse component of liquid flow velocity; o, T, axes of parabolic cylinder co- 
ordinate system; ~, flow function; Cf, resistance coefficient; h, b, depth and width of cut. 

I. 

2. 

. 
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INFLUENCE OF THE CONCENTRATION INITIAL SECTION ON THE 

MAGNITUDE OF DIFFUSION FLUXES IN TURBULENT FLUID FLOW 

Yu. E. Guber UDC 532.517.4:536.2.242+629.7.063 

Results of an experimental investigation of the influence of initial sections of 
a mass delivery surface on values of the Stanton number are presented. 

A stabilized temperature (concentration) profile is achieved in very rare cases in tur- 
bulent fluid flows with Prandtl (Schmidt) numbers significantly greater than one (oil heat ex- 
changers, electrochemical treatment in viscous electrolytes, etc.) and a length of the ini- 
tial section of the transfer surface sufficiently large. Hence, the design dependences of 
the heat and mass transfer, obtained for a developed temperature (concentration) profile, are 
barely suitable under these conditions. The methods used at this time to take account of the 
influence of the initial thermal (diffusion) section on the average values of the Nusselt 
(Stanton) numbers [i, 2] are empirical in nature. 

An experimental investigation was conducted in the range of Reynolds numbers between I'I0 ~ 
and 1.3.106 and of Schmidt numbers, 1.5.10a-5.2-i0 ~, on two experimental setups. The change 
in the limit diffusion currents in an oxidation--reduction reaction on potassium ferroferri- 
cyanide which proceeds on solid electrodes is studied in the research as a function of the 
extent of the electrode along the flow. The method of conducting the tests and the experi- 
mental setups are described in detail in [3, 4]. The electrodes were glued flush with the 
side surface of a rotating cylinder. The rotating cylinder has definite advantages over other 
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